Optimization Toolbox™ Release Notes

How to Contact MathWorks

www.mathworks.com

comp.soft-sys.matlab

www.mathworks.com/contact TS.html Technical Support

Web

Newsgroup

suggest@mathworks.com bugs@mathworks.com

doc@mathworks.com

service@mathworks.com info@mathworks.com

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc. 3 Apple Hill Drive Natick. MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Optimization ToolboxTM Release Notes

© COPYRIGHT 2005–2011 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Contents

Summary by Version	1
Version 6.1 (R2011b) Optimization Toolbox Software	4
Version 6.0 (R2011a) Optimization Toolbox Software	7
Version 5.1 (R2010b) Optimization Toolbox Software	11
Version 5.0 (R2010a) Optimization Toolbox Software	13
Version 4.3 (R2009b) Optimization Toolbox Software	15
Version 4.2 (R2009a) Optimization Toolbox Software	18
Version 4.1 (R2008b) Optimization Toolbox Software	22
Version 4.0 (R2008a) Optimization Toolbox Software	26
Version 3.1.2 (R2007b) Optimization Toolbox Software	29
Version 3.1.1 (R2007a) Optimization Toolbox Software	30
Version 3.1 (R2006b) Optimization Toolbox Software	32
Version 3.0.4 (R2006a) Optimization Toolbox Software	35
Version 3.0.3 (R14SP3) Optimization Toolbox Software	36

Compatibility Summ	ary for Optimi	zation Toolbox	
Software			37

Summary by Version

This table provides quick access to what's new in each version. For clarification, see "Using Release Notes" on page 2.

Version (Release)	New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Latest Version	Yes	Yes	Bug Reports
V6.1 (R2011b)	Details	Summary	Includes fixes
V6.0 (R2011a)	Yes	Yes	Bug Reports
	Details	Summary	Includes fixes
V5.1 (R2010b)	Yes Details	No	Bug Reports Includes fixes
V5.0 (R2010a)	Yes	Yes	Bug Reports
	Details	Summary	Includes fixes
V4.3 (R2009b)	Yes	Yes	Bug Reports
	Details	Summary	Includes fixes
V4.2 (R2009a)	Yes	Yes	Bug Reports
	Details	Summary	Includes fixes
V4.1 (R2008b)	Yes	Yes	Bug Reports
	Details	Summary	Includes fixes
V4.0 (R2008a)	Yes	Yes	Bug Reports
	Details	Summary	Includes fixes
V3.1.2 (R2007b)	No	No	Bug Reports Includes fixes
V3.1.1 (R2007a)	Yes	Yes	Bug Reports
	Details	Summary	Includes fixes
V3.1 (R2006b)	Yes	Yes	Bug Reports
	Details	Summary	Includes fixes
V3.0.4 (R2006a)	No	No	Bug Reports Includes fixes
V3.0.3 (R14SP3)	Yes Details	No	Bug Reports Includes fixes

Using Release Notes

Use release notes when upgrading to a newer version to learn about:

- New features
- Changes
- Potential impact on your existing files and practices

Review the release notes for other MathWorks® products required for this product (for example, MATLAB® or Simulink®). Determine if enhancements, bugs, or compatibility considerations in other products impact you.

If you are upgrading from a software version other than the most recent one, review the current release notes and all interim versions. For example, when you upgrade from V1.0 to V1.2, review the release notes for V1.1 and V1.2.

What Is in the Release Notes

New Features and Changes

- New functionality
- Changes to existing functionality

Version Compatibility Considerations

When a new feature or change introduces a reported incompatibility between versions, the **Compatibility Considerations** subsection explains the impact.

Compatibility issues reported after the product release appear under Bug Reports at the MathWorks Web site. Bug fixes can sometimes result in incompatibilities, so review the fixed bugs in Bug Reports for any compatibility impact.

Fixed Bugs and Known Problems

MathWorks offers a user-searchable Bug Reports database so you can view Bug Reports. The development team updates this database at release time

and as more information becomes available. Bug Reports include provisions for any known workarounds or file replacements. Information is available for bugs existing in or fixed in Release 14SP2 or later. Information is not available for all bugs in earlier releases.

Access Bug Reports using your MathWorks Account.

Documentation on the MathWorks Web Site

Related documentation is available on mathworks.com for the latest release and for previous releases:

- Latest product documentation
- Archived documentation

Version 6.1 (R2011b) Optimization Toolbox Software

This table summarizes what's new in Version 6.1 (R2011b):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes	Yes	Bug Reports
Details below	Summary	Includes fixes

New features and changes introduced in this version are:

- "Derivative Estimates by Central Finite Differences in More Solvers" on page 4
- "Gauss-Newton Algorithm Removed" on page 4
- "DerivativeCheck Changes" on page 5
- "fmincon ScaleProblem Default Changed" on page 5
- "fsolve trust-region-dogleg Algorithm Change" on page 5

Derivative Estimates by Central Finite Differences in More Solvers

The fsolve, lsqcurvefit, and lsqnonlin solvers now accept the FinDiffType option. Set FinDiffType to 'central' with optimset to enable derivative estimation by central finite differences. Central finite differences are more accurate, but take more time than the default 'forward' finite differences.

Gauss-Newton Algorithm Removed

The fsolve, lsqcurvefit, and lsqnonlin functions no longer use the Gauss-Newton algorithm.

Compatibility Considerations

The previous way of selecting the Gauss-Newton algorithm was to set the LargeScale option to 'off', and:

- fsolve Set the NonlEqnAlgorithm option to 'gn'.
- Isqcurvefit or Isqnonlin Set the LevenbergMarquardt option to 'off'.

To select an algorithm, use optimset to set the Algorithm option:

- fsolve trust-region-dogleg, trust-region-reflective, or levenberg-marquardt
- lsqcurvefit or lsqnonlin trust-region-reflective or levenberg-marquardt

All solvers now ignore the NonlEqnAlgorithm and LevenbergMarquardt options.

DerivativeCheck Changes

When you set the DerivativeCheck option to 'on', and

Compatibility Considerations

fmincon ScaleProblem Default Changed

The fmincon interior-point and sqp algorithms can use the ScaleProblem option. The default value of ScaleProblem is now 'none', instead of 'obj-and-constr'.

Compatibility Considerations

If you set the GradObj option to 'on', fmincon iterations might change as a result of the new default value of ScaleProblem. To obtain the previous behavior, set ScaleProblem to 'obj-and-constr' with optimset.

fsolve trust-region-dogleg Algorithm Change

The fsolvetrust-region-dogleg algorithm no longer performs an internal calculation of conditioning. This change usually speeds fsolve.

Compatibility Considerations

fsolve iterations differ from previous versions. Additionally, the solution and all associated outputs can differ from previous versions.

Version 6.0 (R2011a) Optimization Toolbox Software

This table summarizes what's new in Version 6.0 (R2011a):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes	Yes	Bug Reports
Details below	Summary	Includes fixes

New features and changes introduced in this version are:

- "New Quadratic Programming Algorithm" on page 7
- "Enhanced Robustness in Nonlinear Solvers" on page 8
- "New Defaults in DiffMinChange and DiffMaxChange Options" on page 9
- "Output Structure Tweak" on page 9
- "ktrlink Compatible with KNITRO 7" on page 10
- "New quadprog Demo" on page 10

New Quadratic Programming Algorithm

quadprog has a new algorithm named 'interior-point-convex'. It has these features:

- The algorithm has fast internal linear algebra.
- The algorithm handles sparse problems.
- There is a new presolve module that can improve speed, numerical stability, and detection of infeasibility.
- The algorithm handles large convex problems, and accepts and uses sparse inputs. See "Large-Scale vs. Medium-Scale Algorithms".
- The algorithm optionally gives iterative display.
- The algorithm has enhanced exit messages.

For details on the algorithm, see "interior-point-convex quadprog Algorithm". For help choosing the algorithm to use, see "Quadratic Programming Algorithms".

Compatibility Considerations

You now choose the quadprog algorithm by using optimset to set the Algorithm option instead of the LargeScale option. If you don't set Algorithm or LargeScale, quadprog behaves as before.

Algorithm option choices are:

- trust-region-reflective (formerly LargeScale = 'on'), the default
- active-set (formerly LargeScale = 'off')
- interior-point-convex

The previous way of choosing the quadprog algorithm at the command line was to set the LargeScale option to 'on' or 'off'. quadprog now ignores the LargeScale option, except when you set the inconsistent values LargeScale = 'off' and Algorithm = 'trust-region-reflective'. In this case, to avoid backward incompatibility, quadprog honors the LargeScale option, and uses the 'active-set' algorithm.

quadprog now checks whether any inputs are complex, and, if so, it errors. The only exception is the Hinfo argument for the HessMult option is allowed to be complex.

Enhanced Robustness in Nonlinear Solvers

More solvers now attempt to recover from errors in the evaluation of objective functions and nonlinear constraint functions during iteration steps, or, for some algorithms, during gradient estimation. The errors include results that are NaN or Inf for all solvers, or complex for fmincon and fminunc. If there is such an error, the algorithms attempt to take different steps. The following solvers are enhanced:

- fmincon trust-region-reflective algorithm (the interior-point and sqp algorithms already had this robustness)
- fminunc LargeScale algorithm

- fsolve trust-region-reflective, trust-region-dogleg, and levenberg-marquardt algorithms
- 1sqcurvefit trust-region-reflective and levenberg-marquardt algorithms
- Isqnonlin trust-region-reflective and levenberg-marquardt algorithms

New Defaults in DiffMinChange and DiffMaxChange Options

The DiffMinChange and DiffMaxChange options set the minimum and maximum possible step sizes for finite differences in gradient estimation. The defaults are now:

- DiffMinChange = 0 (formerly 1e-8)
- DiffMaxChange = Inf (formerly 0.1)

Solvers have mechanisms that ensure nonzero and non-infinite step sizes, so the new defaults simply mean that the step size adjustment algorithms have fewer constraints.

The new defaults remove the previous arbitrary choices. The previous values can be inappropriate when components are too large or small in magnitude. Tests show these new defaults are good for most situations.

Compatibility Considerations

Some solver iterations can differ from previous ones. To obtain the previous behavior:

```
options = optimset('DiffMinChange',1e-8,'DiffMaxChange',0.1);
```

Output Structure Tweak

For the trust-region-reflective algorithm, the algorithm field of the output structure is now 'trust-region-reflective'. This value differs slightly from the previous values returned by fmincon, fsolve, lsqcurvefit, lsqnonlin, and quadprog.

Compatibility Considerations

To avoid errors or unexpected results, update any code that depends on the exact value of the output.algorithm string.

ktrlink Compatible with KNITRO 7

ktrlink is compatible with KNITRO® 7. For details, see "ktrlink: An Interface to KNITRO® Libraries", or the Ziena Optimization web site http://www.ziena.com/.

New quadprog Demo

A new demo shows how to solve portfolio optimization problems using quadprog. View the demo at the command line by entering

showdemo portfoptimdemo

Version 5.1 (R2010b) Optimization Toolbox Software

This table summarizes what's new in Version 5.1 (R2010b):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes Details below	No	Bug Reports Includes fixes

New features and changes introduced in this version are:

- "Enhanced fmincon Finite Difference Algorithms Add Robustness" on page 11
- "ktrlink Available for Macintosh 64-Bit Systems" on page 11
- "Output Structure Tweaks" on page 11
- "New Video Demo on Modeling" on page 12

Enhanced fmincon Finite Difference Algorithms Add Robustness

The fmincon interior-point and sqp algorithms now attempt to recover from errors in the evaluation of objective functions and nonlinear constraint functions during gradient estimation. The errors include results that are NaN, Inf, or complex. If there is such an error, the finite differencing routines attempt to take different steps.

ktrlink Available for Macintosh 64-Bit Systems

The ktrlink function now works with Macintosh® 64-bit systems. Therefore, ktrlink works on the same systems as all other Optimization ToolboxTM functions.

Output Structure Tweaks

All linprog and quadprog algorithms now create a firstorderopt field in the output structure. This field contains the value of the first-order optimality measure at the final point. All fmincon and quadprog algorithms now create a construiolation field in the output structure. This field contains the largest value of the constraint functions at the final point: bounds, linear constraints, and nonlinear constraints. (Some algorithms return the larger of the constraint functions and 0.) See "Writing Constraints".

New Video Demo on Modeling

There is a new two-part demo on modeling and solving optimization problems. View the first part from the MATLAB command line by entering

```
playbackdemo('Optimization-Modeling-1','toolbox/optim/web/demos');
```

View the second part by entering

```
playbackdemo('Optimization-Modeling-2-Converting-To-Solver-Form',...
'toolbox/optim/web/demos');
```

Version 5.0 (R2010a) Optimization Toolbox Software

This table summarizes what's new in Version 5.0 (R2010a):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes	Yes	Bug Reports
Details below	Summary	Includes fixes

New features and changes introduced in this version are:

- "New fmincon Algorithm" on page 13
- "Isgnonneg No Longer Uses x0" on page 13

New fmincon Algorithm

fmincon has a new algorithm called SQP for Sequential Quadratic Programming. The algorithm has the following features:

- Honors bounds at all iterations
- Attempts a different step if one leads to an objective or constraint function returning a NaN, Inf, or complex result
- Fast internal linear algebra for solving quadratic programs

Choose the algorithm at the command line by setting the Algorithm option to 'sqp' with optimset. For more information about the algorithm, see "fmincon SQP Algorithm" in the Optimization Toolbox documentation.

Isqnonneg No Longer Uses x0

The 1sqnonneg solver no longer accepts a start point x0 as an optional input.

Compatibility Considerations

The Optimization Tool no longer has an input region for accepting a start point. If you import or run a problem that contains a start point x0, MATLAB issues a warning. Also, the Optimization Tool and 1sqnonneg ignore x0,

and instead use a start point of a vector of zeroes. If you export a problem structure from the Optimization Tool, there is no x0 field.

Version 4.3 (R2009b) Optimization Toolbox Software

This table summarizes what's new in Version 4.3 (R2009b):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes	Yes	Bug Reports
Details below	Summary	Includes fixes

New features and changes introduced in this version are:

- "Enhanced Exit Messages in Selected Solvers" on page 15
- "fmincon Interior-Point Algorithm Robust to Certain Errors" on page 15
- "Changes in quadprog" on page 16
- "Changes in linprog" on page 16
- "Multiobjective optimValues Changes" on page 16

Enhanced Exit Messages in Selected Solvers

Enhanced, clearer exit messages in fsolve, lsqnonlin, and lsqcurvefit, with links for more information. For more information about the enhancements, see "Exit Flags and Exit Messages".

Compatibility Considerations

For solvers with enhanced exit messages, the content of output.message contains many more characters than before. User code that relies on this field might need to be modified in order to display the larger exit message satisfactorily.

fmincon Interior-Point Algorithm Robust to Certain Errors

The fmincon interior-point algorithm attempts to continue when a user-supplied objective or constraint function returns Inf, NaN, or a complex result. For more information, see "fmincon Interior Point Algorithm".

Changes in quadprog

The large-scale quadprog algorithm now uses the TolFun and MaxIter tolerances for deciding when to end iterations when there are only linear equality constraints, instead of the TolPCG and MaxPCGIter tolerances.

The quadprog output structure now contains the construiolation field, which reports the maximum constraint function at the final point.

Compatibility Considerations

For large-scale linear equality constrained problems, the default values of the tolerances are much tighter than before, so quadprog can take more iterations, but the resulting solution should be more accurate.

Changes in linprog

The large-scale interior-point algorithm of linprog now has a backtracking mechanism for the case of stalling, and performs LDL factorization when there is rank deficiency. For more information, see "Large Scale Linear Programming".

The linprog output structure now contains the construiolation field, which reports the maximum constraint function at the final point.

Compatibility Considerations

The interior-point algorithm of linprog might arrive at different solutions than before, and can solve more problems than before.

Multiobjective optimValues Changes

The optimValues structure, used by output functions, has two new fields to better reflect the state of multiobjective solvers:

- For fgoalattain, the optimValues.attainfactor field contains the value of γ, the attainment factor.
- For fminimax, the optimValues.maxfval field contains the value $\max_i F_i$, where F is the vector of objectives.

Furthermore, the value stored in optimValues.fval has changed. Now optimValues.fval contains the vector F of objective function values. For a complete description of the current optimValues structure, see "Fields in optimValues".

Compatibility Considerations

User code that uses the optimValues.fval field within an output function in fgoalattain and fminimax might need to be updated to avoid errors

Version 4.2 (R2009a) Optimization Toolbox Software

This table summarizes what's new in Version 4.2 (R2009a):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes	Yes	Bug Reports
Details below	Summary	Includes fixes

New features and changes introduced in this version are:

- "Parallel Gradient Estimation Available in fmincon Interior-Point Algorithm" on page 18
- "Enhanced Exit Messages in Selected Solvers" on page 18
- "Change in linprog Simplex Algorithm" on page 20
- "Change in fminunc Exit Flag" on page 20
- "New demos" on page 20

Parallel Gradient Estimation Available in fmincon Interior-Point Algorithm

The fmincon solver's interior-point algorithm can now compute finite differences in parallel in order to speed the estimation of gradients. For details on how to use this parallel gradient estimation, see the "Parallel Computing for Optimization" chapter in the User's Guide.

Enhanced Exit Messages in Selected Solvers

Solvers print exit messages by default at the end of their runs. The exit messages are different in R2009a for several solvers, and the messages have been enhanced with new functionality. The following sections describe the new features and changes. There is more information in the "Exit Flags and Exit Messages" section of the User's Guide.

The following solvers have enhanced exit messages:

• fgoalattain

- fmincon
- fminimax
- fminunc
- fseminf

Links to More Information Window

The enhanced exit messages include hyperlinks within their exit messages. These hyperlinks bring up a window containing further information about the terms used in the exit messages.

Link for More Detail in Command Window

A <stopping criteria details> hyperlink may appear at the end of an exit message, depending on the solver and setting of the Display option. This link causes the solver to print more detail about the exit conditions to the MATLAB Command Window.

New Display Option Values Control Default Detail

There are new values of the Display option to control whether detailed exit messages appear instead of the default (simpler) messages. The new values are:

- 'final-detailed'
- 'iter-detailed'
- 'notify-detailed'

These settings have the same effect as the corresponding settings without '-detailed', but give detailed exit messages instead of the default exit messages. For solvers without the new exit messages, the '-detailed' options give the same behavior as without '-detailed'.

Messages in Output Structure

For solvers with enhanced exit messages, the message field of the output structure contains both the default (simpler) and the detailed exit messages,

separated by a line of text stating Stopping criteria details:. The message field does not contain hyperlinks; it contains only text.

Compatibility Considerations

For solvers with enhanced exit messages, the content of output.message contains many more characters than before. User code that relies on this field may need to be modified in order to display the larger exit message satisfactorily.

Change in linprog Simplex Algorithm

The simplex algorithm of linprog now detects when there is no progress in the solution process. It attempts to continue by performing bound perturbation.

Compatibility Considerations

The simplex algorithm of linprog might arrive at different solutions than before, and can solve more problems than before.

Change in fminunc Exit Flag

One exit flag in the fminunc medium-scale solver was changed from -2 to 5. This flag appears when the solver predicts a change in function value at the next step in its iterations will be less than the TolFun tolerance. This condition can occur at a relative minimum, which should be reported by a positive flag.

Compatibility Considerations

This change might cause users (or code) that examine exit flags to evaluate a result more favorably than previously, since positive exit flags represent normal termination of solvers.

New demos

There are two new demos:

• A demo showing how to use Symbolic Math ToolboxTM functions to help calculate gradients and Hessians. Run the demo at the MATLAB command line by entering echodemo symbolic_optim_demo.

• A demo showing how to use fseminf for investigating the effect of parameter uncertainty. Run the demo at the MATLAB command line by entering echodemo airpollution.

Furthermore, the optimization tutorial demo now shows how to include extra parameters. Run the demo at the MATLAB command line by entering echodemo tutdemo.

Version 4.1 (R2008b) Optimization Toolbox Software

This table summarizes what's new in Version 4.1 (R2008b):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes	Yes	Bug Reports
Details below	Summary	Includes fixes

New features and changes introduced in this version are:

- "fsolve, lsqcurvefit, lsqnonlin Algorithm and Options Changes" on page 22
- "Optimization Tool Enables Parallel Functionality" on page 23
- "Central Finite Differences Available in Selected Solvers" on page 23
- "Isgnonneg Refactored" on page 24
- "Finite Difference Algorithm Tweaked" on page 24
- "DerivativeCheck Tolerance Changed" on page 25

fsolve, Isqcurvefit, Isqnonlin Algorithm and Options Changes

- The Levenberg-Marquardt algorithm was refactored in the solvers fsolve, lsqcurvefit and lsqnonlin. It is now a more standard implementation, that accepts and preserves sparse Jacobians.
- Choose between the algorithms used in fsolve, lsqcurvefit and lsqnonlin using the new Algorithm option.
- There is a new ScaleProblem option that can sometimes help the Levenberg-Marquardt algorithm converge.
- The default fsolve algorithm, 'trust-region-dogleg', has been validated to work with sparse Jacobians.

Compatibility Considerations

- The refactored Levenberg-Marquardt algorithm can cause fsolve, lsqcurvefit and lsqnonlin to yield different answers than before.
- The previous way of choosing the algorithm at the command line was to set the LargeScale option to 'on' or 'off', and, for all solvers but fsolve, to set the LevenbergMarquardt option to 'on' or 'off'. For fsolve, in addition to the LargeScale option, you needed to set the NonlEqnAlgorithm option appropriately. LargeScale, NonlEqnAlgorithm, and LevenbergMarquardt are now ignored, except when choosing to use the Gauss-Newton algorithm.
- The Gauss-Newton algorithm warns that soon it may no longer be available.
- The default value of the MaxFunEvals option in the refactored Levenberg-Marquardt algorithm is now 200*numberOfVariables; the previous value was 100*numberOfVariables.

Optimization Tool Enables Parallel Functionality

You can now access built-in parallel functionality in Optimization Tool for relevant Optimization Toolbox solvers and, if licensed, Global Optimization Toolbox solvers. The option is available when you have a license for Parallel Computing Toolbox™ functions.

Central Finite Differences Available in Selected Solvers

The following solvers can now use central finite differences for gradient estimation:

- fgoalattain
- fmincon
- fminimax
- fminunc
- fseminf

The fmincon active-set algorithm and fminunc medium-scale algorithm gained central finite differences this release. The fmincon interior-point

algorithm already had them, and the trust-region-reflective algorithm for both solvers requires a user-supplied gradient, so does not use finite differences.

To use central finite differences, use optimset to set the FinDiffType option to 'central' instead of the default 'forward'. This causes the solver to estimate gradients by formulae such as

$$\nabla f(x) \approx \left[\frac{f(x + \Delta_1 e_1) - f(x - \Delta_1 e_1)}{2\Delta_1}, \dots, \frac{f(x + \Delta_n e_n) - f(x - \Delta_n e_n)}{2\Delta_n} \right],$$

instead of

$$\nabla f(x) \approx \left[\frac{f(x + \Delta_1 e_1) - f(x)}{\Delta_1}, \frac{f(x + \Delta_2 e_2) - f(x)}{\Delta_2}, \dots, \frac{f(x + \Delta_n e_n) - f(x)}{\Delta_n}\right].$$

Central finite differences take twice as many function evaluations as forward finite differences, but are usually much more accurate.

Central finite differences can work in parallel for gradient estimation in fgoalattain, fmincon active-set algorithm, and fminimax. For details on how to use this parallel gradient estimation, see the "Parallel Computing for Optimization" chapter in the User's Guide.

Isqnonneg Refactored

1sqnonneg was refactored. It can now use sparse matrices, and it preserves sparsity during its execution.

Finite Difference Algorithm Tweaked

A subroutine for gradient estimation by forward finite differences in nonlinear solvers had a bug that affected it when the current point x had a component with the value 0. Forward finite differences are typically calculated with a step size proportional to sqrt(eps), which is about $1.5*10^{-8}$. When a component of x was 0, the step size would instead be proportional to DiffMinChange, which has a default value of 10^{-8} . There is now no difference in step size when x is 0.

Compatibility Considerations

Nonlinear solvers can run slightly differently whenever an iteration causes a component of x to be zero, and gradients are estimated by forward finite differences.

DerivativeCheck Tolerance Changed

The DerivativeCheck option enables you to ascertain whether the derivative (gradient) functions that you supply for objective or constraint functions give approximately the same values as those estimated by a solver using finite differences. The meaning of "approximately" has changed. Now it means the relative error of each component of the gradient is less than 10^{-6} , unless the size of an analytically given component is smaller than 1, in which case it means the absolute difference is less than 10^{-6} . Previously, the gradients were considered approximately equal if the maximum absolute error in any component of the gradient was less than $(10^{-6} * norm of analytic gradient) + <math>10^{-5}$.

Compatibility Considerations

Some problems will now report violations of the DerivativeCheck condition, when previously they would not.

Version 4.0 (R2008a) Optimization Toolbox Software

This table summarizes what's new in Version 4.0 (R2008a):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes	Yes	Bug Reports
Details below	Summary	Includes fixes

New features and changes introduced in this version are:

- "Parallel Computing Toolbox Support in fmincon, fminimax, and fgoalattain" on page 26
- "Combined and Extended optimtool" on page 26
- "New fmincon Solver, New Option Algorithm for fmincon, Option LargeScale Changed" on page 27
- "External Interface to KNITRO Libraries" on page 27
- "Default PrecondBandWidth = Inf in lsqcurvefit, lsqnonlin, and fsolve" on page 28
- "New Option TolConSQP with Incompatible Default Value" on page 28
- "Field constrviolation in Output Structure" on page 28

Parallel Computing Toolbox Support in fmincon, fminimax, and fgoalattain

fmincon, fminimax, and fgoalattain can take finite differences in parallel in order to speed the estimation of gradients. For details on how to use this parallel gradient estimation, see the "Parallel Computing for Optimization" chapter in the User's Guide.

Combined and Extended optimtool

The Global Optimization Toolbox GUIs gatool and psearchtool have been combined into the Optimization Tool GUI. To access these GUIs, type optimtool at the command line, and choose the appropriate solver.

Furthermore, three new Global Optimization Toolbox solvers were added to Optimization Tool: gamultiobj, simulannealbnd, and threshacceptbnd.

Optimization Tool shows Global Optimization Toolbox solvers only if these solvers are licensed.

New fmincon Solver, New Option Algorithm for fmincon, Option LargeScale Changed

The new interior-point algorithm is a large-scale algorithm that can handle all types of constraints. It has several new options, explained in the fmincon function reference pages.

fmincon now has three algorithms. Choose between them by setting the new option Algorithm to:

- 'trust-region-reflective' (formerly known as 'large scale')
- 'active-set' (formerly known as 'medium scale')
- 'interior-point'

By default, Algorithm = 'trust-region-reflective'.

Compatibility Considerations

The previous way of choosing the algorithm at the command line was to set option LargeScale to 'on' or 'off'. LargeScale is now ignored, except when LargeScale = 'off' and Algorithm = 'trust-region-reflective'. In this case, the 'active-set' algorithm is used, to minimize backward incompatibility.

External Interface to KNITRO Libraries

Use the new ktrlink function to call KNITRO optimization libraries from Ziena Optimization, Inc. KNITRO libraries must be purchased separately. The External Interface chapter of the User's Guide describes the ktrlink function.

Default PrecondBandWidth = Inf in Isqcurvefit, Isqnonlin, and fsolve

The default value of the PrecondBandWidth option changed from 0 to Inf for the lsqcurvefit, lsqnonlin, and fsolve solvers. This change was beneficial in the vast majority of tested problems.

In Optimization Tool, the default in **Algorithm settings > Subproblem algorithm** is now **Cholesky factorization**, instead of **Preconditioned CG** = 0.

Compatibility Considerations

The new default can lead to slower performance for problems with high-dimensional nonlinearities. If this happens, change the default to another value such as 0 (the previous default).

New Option TolConSQP with Incompatible Default Value

The new TolConSQP option exposes a parameter that was fixed at eps before. The parameter is used in the fmincon, fminimax, fgoalattain, and fseminf solvers.

Compatibility Considerations

The new default value is TolConSQP = 1e-6. This did not affect a vast majority of tested cases, and was beneficial in some. If you want exactly the same behavior as before, set TolConSQP = eps using optimset.

Field constrviolation in Output Structure

The construiolation field now exists in the output structure for the fgoalattain, fmincon, fminimax, and fseminf functions; it measures the nonlinear constraint violation.

Version 3.1.2 (R2007b) Optimization Toolbox Software

This table summarizes what's new in Version 3.1.2 (R2007b):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
No	No	Bug Reports Includes fixes

Version 3.1.1 (R2007a) Optimization Toolbox Software

This table summarizes what's new in Version 3.1.1 (R2007a):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes	Yes	Bug Reports
Details below	Summary	Includes fixes

Changes introduced in this version are:

Changes to Outputs of Multiobjective Solvers

- fminimax now returns the value of max(fval) in the output maxfval.
- The iterative display of fminimax and fgoalattain have changed.

Compatibility Considerations

- The third output argument of the solver fminimax, maxfval, is described in the documentation as the maximum of the objective functions in the input fun evaluated at the solution x, that is, max(fval). Before this release, fminimax actually returned the maximum of the objective functions in the reformulated minimax problem internally constructed by the algorithm. This value was typically very close to, but not necessarily equal to, max(fval). fminimax now returns the exact value of max(fval) in the output maxfval.
- The iterative display for fminimax includes a new column with header Objective value that reports the objective function value of the nonlinear programming reformulation of the minimax problem. The column header Max{F,constraints} has been changed to Max constraint, and the column now contains the maximum violation among all constraints, both internally constructed and user-provided.

The iterative display for fgoalattain now shows the value of the attainment factor in the Attainment factor column. A new column, Max

constraint, contains the maximum violation among all constraints, both internally constructed and user-provided.

Version 3.1 (R2006b) Optimization Toolbox Software

This table summarizes what's new in Version 3.1 (R2006b):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes Details below	Yes-Details labeled as Compatibility Considerations, below. See also Summary.	Bug Reports Includes fixes

New features and changes introduced in this version are:

- "New Optimization Tool" on page 32
- "Plot Functions Option Added" on page 33
- "Output Function Option Enhanced to Accept Multiple Functions" on page 33
- "Changes to the Output Function" on page 33

New Optimization Tool

The Optimization Tool is a graphical user interface (GUI) for performing common optimization tasks with the Optimization Toolbox. Using the optimtool, you can do the following:

- Select a solver and define your optimization problem.
- Set and inspect optimization options and their default values.
- Run problems and visualize results.
- Import and export problem definitions, algorithm options, and results between the MATLAB workspace and the Optimization Tool.
- Automatically generate M-code to capture, automate, and recreate your problem.
- Access built-in help.

Plot Functions Option Added

You can now specify the PlotFcns option in the optimset function or using the Optimization Tool for use with an Optimization Toolbox solver. With this option, you can plot various measures of progress while the algorithm executes. You can select from several predefined plots, or you can write your own.

Output Function Option Enhanced to Accept Multiple Functions

You can now specify more than one output function in the OutputFcn option.

Changes to the Output Function

The output function input x and fields in the optimValues structure have the following changes that address bugs in previous releases:

- residual now returns the residual vector for lsqnonlin and lsqcurvefit.
- resnorm contains the sum of squares and has been added for lsqnonlin and lsqcurvefit. The previous field fval has been removed for these functions.
- procedure has been removed for Isquonlin, Isqcurvefit, and fsolve.
- x now returns the expected shape and size for fqoalattain and fminimax.

Compatibility Considerations

The above changes to the input x and optimValues structure have the following compatibility considerations in the output function:

- If you have references to the residual in a previous version, note that the value of this field has changed for lsqnonlin and lsqcurvefit. This fixes the problem addressed by the bug report S-289285.
- Any references to fval for lsqnonlin and lsqcurvefit need to be updated to resnorm. This fixes the problem addressed by the bug report S-289285.
- Any references to procedure for Isqnonlin and Isqcurvefit need to be removed. This fixes the problem addressed by the bug report S-291974.

• Previously, for fgoalattain and fminimax, x returned a column vector with an additional last element. If you have references to the values for x in a previous version, the extra element must be removed and the output vector may need to be reshaped. This fixes the problem addressed by the bug report S-315658.

Version 3.0.4 (R2006a) Optimization Toolbox Software

This table summarizes what's new in Version 3.0.4 (R2006a):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
No	No	Bug Reports Includes fixes

Version 3.0.3 (R14SP3) Optimization Toolbox Software

This table summarizes what's new in Version 3.0.3 (R14SP3):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes Details below	No	Bug Reports Includes fixes

New features and changes introduced in this version are:

Notify Parameter Added to Display Option for Five Functions

You can now set the optimization option Display to 'notify' for the functions fmincon, fminunc, fminimax, fgoalattain, and fseminf. When Display is set to 'notify', the output is displayed only if the function does not converge.

Compatibility Summary for Optimization Toolbox Software

This table summarizes new features and changes that might cause incompatibilities when you upgrade from an earlier version, or when you use files on multiple versions. Details are provided in the description of the new feature or change.

Version (Release)	New Features and Changes with Version Compatibility Impact
Latest Version V6.1 (R2011b)	See the Compatibility Considerations subheading for each of these changes or new features:
	• "DerivativeCheck Changes" on page 5
	• "Gauss-Newton Algorithm Removed" on page 4
	• "fmincon ScaleProblem Default Changed" on page 5
	• "fsolve trust-region-dogleg Algorithm Change" on page 5
V6.0 (R2011a)	See the Compatibility Considerations subheading for each of these changes or new features:
	"New Quadratic Programming Algorithm" on page 7
	• "New Defaults in DiffMinChange and DiffMaxChange Options" on page 9
	• "Output Structure Tweak" on page 9

Version (Release)	New Features and Changes with Version Compatibility Impact
V5.1 (R2010b)	None
V5.0 (R2010a)	See the Compatibility Considerations subheading for this change:
	• "lsqnonneg No Longer Uses x0" on page 13
V4.3 (R2009b)	See the Compatibility Considerations subheading for each of these new features or changes:
	• "Enhanced Exit Messages in Selected Solvers" on page 15
	• "Changes in quadprog" on page 16
	• "Changes in linprog" on page 16
	• "Multiobjective optimValues Changes" on page 16
V4.2 (R2009a)	See the Compatibility Considerations subheading for each of these new features or changes:
	• "Enhanced Exit Messages in Selected Solvers" on page 18
	• "Change in linprog Simplex Algorithm" on page 20
	• "Change in fminunc Exit Flag" on page 20

Version (Release)	New Features and Changes with Version Compatibility Impact
V4.1 (R2008b)	See the Compatibility Considerations subheading for each of these new features or changes:
	• "fsolve, lsqcurvefit, lsqnonlin Algorithm and Options Changes" on page 22
	• "Finite Difference Algorithm Tweaked" on page 24
	• "DerivativeCheck Tolerance Changed" on page 25
V4.0 (R2008a)	See the Compatibility Considerations subheading for each of these new features or changes:
	• "New fmincon Solver, New Option Algorithm for fmincon, Option LargeScale Changed" on page 27
	• "Default PrecondBandWidth = Inf in lsqcurvefit, lsqnonlin, and fsolve" on page 28
	• "New Option TolConSQP with Incompatible Default Value" on page 28
V3.1.2 (R2007b)	None

Version (Release)	New Features and Changes with Version Compatibility Impact
V3.1.1 (R2007a)	See the Compatibility Considerations subheading for this change: • "Changes to Outputs of
	Multiobjective Solvers" on page 30
V3.1 (R2006b)	See the Compatibility Considerations subheading for this change:
	• "Changes to the Output Function" on page 33
V3.0.4 (R2006a)	None
V3.0.3 (R14SP3)	None